Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 199
1.
Proc Natl Acad Sci U S A ; 121(15): e2320505121, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38568977

The presynaptic SNARE-complex regulator complexin (Cplx) enhances the fusogenicity of primed synaptic vesicles (SVs). Consequently, Cplx deletion impairs action potential-evoked transmitter release. Conversely, though, Cplx loss enhances spontaneous and delayed asynchronous release at certain synapse types. Using electrophysiology and kinetic modeling, we show that such seemingly contradictory transmitter release phenotypes seen upon Cplx deletion can be explained by an additional of Cplx in the control of SV priming, where its ablation facilitates the generation of a "faulty" SV fusion apparatus. Supporting this notion, a sequential two-step priming scheme, featuring reduced vesicle fusogenicity and increased transition rates into the faulty primed state, reproduces all aberrations of transmitter release modes and short-term synaptic plasticity seen upon Cplx loss. Accordingly, we propose a dual presynaptic function for the SNARE-complex interactor Cplx, one as a "checkpoint" protein that guarantees the proper assembly of the fusion machinery during vesicle priming, and one in boosting vesicle fusogenicity.


Synapses , Synaptic Vesicles , Synapses/metabolism , Synaptic Vesicles/metabolism , Action Potentials , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , SNARE Proteins/genetics , SNARE Proteins/metabolism , Synaptic Transmission/physiology
2.
Front Mol Neurosci ; 17: 1308466, 2024.
Article En | MEDLINE | ID: mdl-38481472

Adaptation of photoreceptor sensitivity to varying light intensities is a fundamental requirement for retinal function and vision. Adaptive mechanisms in signal transduction are well described, but little is known about the mechanisms that adapt the photoreceptor synapse to changing light intensities. The SNARE complex regulators Complexin 3 and Complexin 4 have been proposed to be involved in synaptic light adaptation by limiting synaptic vesicle recruitment and fusion. How this Complexin effect is exerted is unknown. Focusing on rod photoreceptors, we established Complexin 4 as the predominant Complexin in the light-dependent regulation of neurotransmitter release. The number of readily releasable synaptic vesicles is significantly smaller in light than in dark at wildtype compared to Complexin 4 deficient rod photoreceptor ribbon synapses. Electrophysiology indicates that Complexin 4 reduces or clamps Ca2+-dependent sustained synaptic vesicle release, thereby enhancing light signaling at the synapse. Complexin 4 deficiency increased synaptic vesicle release and desensitized light signaling. In a quantitative proteomic screen, we identified Transducin as an interactor of the Complexin 4-SNARE complex. Our results provide evidence for a presynaptic interplay of both Complexin 4 and Transducin with the SNARE complex, an interplay that may facilitate the adaptation of synaptic transmission to light at rod photoreceptor ribbon synapses.

3.
Proc Natl Acad Sci U S A ; 121(8): e2301449121, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38346189

GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles (SVs) at the presynaptic active zone (AZ). Strikingly, the depressing phasic release exhibits looser coupling distance than the tonic release. Furthermore, the tonic and phasic release are selectively affected by deletion of synaptoporin (SPO) and Ca2+-dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. The cytosolic protein CAPS2 showed a SV-associated distribution similar to the vesicular transmembrane protein SPO, and they were colocalized in the same terminals. We developed the "Flash and Freeze-fracture" method, and revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to persistency of the RRP increase. Thus, we identified structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals.


Habenula , Receptors, GABA-B , Animals , Receptors, GABA-B/genetics , Receptors, GABA-B/metabolism , Habenula/metabolism , Astacoidea/metabolism , Presynaptic Terminals/metabolism , Caffeine , Neurotransmitter Agents/metabolism , gamma-Aminobutyric Acid/metabolism
4.
iScience ; 27(1): 108679, 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38213627

Synapses, specialized contact sites between neurons, are the fundamental elements of neuronal information transfer. Synaptic plasticity involves changes in synaptic morphology and the number of neurotransmitter receptors, and is thought to underlie learning and memory. However, it is not clear how these structural and functional changes are connected. We utilized time-lapse super-resolution STED microscopy of organotypic hippocampal brain slices and cultured neurons to visualize structural changes of the synaptic nano-organization of the postsynaptic scaffolding protein PSD95, the presynaptic scaffolding protein Bassoon, and the GluA2 subunit of AMPA receptors by chemically induced long-term potentiation (cLTP) at the level of single synapses. We found that the nano-organization of all three proteins increased in complexity and size after cLTP induction. The increase was largely synchronous, peaking at ∼60 min after stimulation. Therefore, both the size and complexity of individual pre- and post-synaptic nanostructures serve as substrates for tuning and determining synaptic strength.

6.
J Cell Biol ; 223(1)2024 01 01.
Article En | MEDLINE | ID: mdl-38032389

Nedd4-2 is an E3 ubiquitin ligase in which missense mutation is related to familial epilepsy, indicating its critical role in regulating neuronal network activity. However, Nedd4-2 substrates involved in neuronal network function have yet to be identified. Using mouse lines lacking Nedd4-1 and Nedd4-2, we identified astrocytic channel proteins inwardly rectifying K+ channel 4.1 (Kir4.1) and Connexin43 as Nedd4-2 substrates. We found that the expression of Kir4.1 and Connexin43 is increased upon conditional deletion of Nedd4-2 in astrocytes, leading to an elevation of astrocytic membrane ion permeability and gap junction activity, with a consequent reduction of γ-oscillatory neuronal network activity. Interestingly, our biochemical data demonstrate that missense mutations found in familial epileptic patients produce gain-of-function of the Nedd4-2 gene product. Our data reveal a process of coordinated astrocytic ion channel proteostasis that controls astrocyte function and astrocyte-dependent neuronal network activity and elucidate a potential mechanism by which aberrant Nedd4-2 function leads to epilepsy.


Astrocytes , Cell Membrane Permeability , Connexin 43 , Nedd4 Ubiquitin Protein Ligases , Potassium Channels, Inwardly Rectifying , Animals , Humans , Mice , Connexin 43/genetics , Mutation, Missense , Proteostasis , Potassium Channels, Inwardly Rectifying/genetics , Nedd4 Ubiquitin Protein Ligases/genetics , Epilepsy
7.
Biol Psychiatry ; 2023 Dec 27.
Article En | MEDLINE | ID: mdl-38154503

BACKGROUND: Neuroligin-3 is a postsynaptic adhesion molecule involved in synapse development and function. It is implicated in rare, monogenic forms of autism, and its shedding is critical to the tumor microenvironment of gliomas. While other members of the neuroligin family exhibit synapse-type specificity in localization and function through distinct interactions with postsynaptic scaffold proteins, the specificity of neuroligin-3 synaptic localization remains largely unknown. METHODS: We investigated the synaptic localization of neuroligin-3 across regions in mouse and human brain samples after validating antibody specificity in knockout animals. We raised a phospho-specific neuroligin antibody and used phosphoproteomics, cell-based assays, and in utero CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) knockout and gene replacement to identify mechanisms that regulate neuroligin-3 localization to distinct synapse types. RESULTS: Neuroligin-3 exhibits region-dependent synapse specificity, largely localizing to excitatory synapses in cortical regions and inhibitory synapses in subcortical regions of the brain in both mice and humans. We identified specific phosphorylation of cortical neuroligin-3 at a key binding site for recruitment to inhibitory synapses, while subcortical neuroligin-3 remained unphosphorylated. In vitro, phosphomimetic mutation of that site disrupted neuroligin-3 association with the inhibitory postsynaptic scaffolding protein gephyrin. In vivo, phosphomimetic mutants of neuroligin-3 localized to excitatory postsynapses, while phospho-null mutants localized to inhibitory postsynapses. CONCLUSIONS: These data reveal an unexpected region-specific pattern of neuroligin-3 synapse specificity, as well as a phosphorylation-dependent mechanism that regulates its recruitment to either excitatory or inhibitory synapses. These findings add to our understanding of how neuroligin-3 is involved in conditions that may affect the balance of excitation and inhibition.

8.
Front Mol Neurosci ; 16: 1299509, 2023.
Article En | MEDLINE | ID: mdl-38152587

Afferent synapses of cochlear inner hair cells (IHCs) employ a unique molecular machinery. Otoferlin is a key player in this machinery, and its genetic defects cause human auditory synaptopathy. We employed site-directed mutagenesis in mice to investigate the role of Ca2+ binding to the C2F domain of otoferlin. Substituting two aspartate residues of the C2F top loops, which are thought to coordinate Ca2+-ions, by alanines (OtofD1841/1842A) abolished Ca2+-influx-triggered IHC exocytosis and synchronous signaling in the auditory pathway despite substantial expression (~60%) of the mutant otoferlin in the basolateral IHC pole. Ca2+ influx of IHCs and their resting membrane capacitance, reflecting IHC size, as well as the number of IHC synapses were maintained. The mutant otoferlin showed a strong apex-to-base abundance gradient in IHCs, suggesting impaired protein targeting. Our results indicate a role of the C2F domain in otoferlin targeting and of Ca2+ binding by the C2F domain for IHC exocytosis and hearing.

9.
Cell ; 186(24): 5308-5327.e25, 2023 11 22.
Article En | MEDLINE | ID: mdl-37922900

Mammalian oocytes are filled with poorly understood structures called cytoplasmic lattices. First discovered in the 1960s and speculated to correspond to mammalian yolk, ribosomal arrays, or intermediate filaments, their function has remained enigmatic to date. Here, we show that cytoplasmic lattices are sites where oocytes store essential proteins for early embryonic development. Using super-resolution light microscopy and cryoelectron tomography, we show that cytoplasmic lattices are composed of filaments with a high surface area, which contain PADI6 and subcortical maternal complex proteins. The lattices associate with many proteins critical for embryonic development, including proteins that control epigenetic reprogramming of the preimplantation embryo. Loss of cytoplasmic lattices by knocking out PADI6 or the subcortical maternal complex prevents the accumulation of these proteins and results in early embryonic arrest. Our work suggests that cytoplasmic lattices enrich maternally provided proteins to prevent their premature degradation and cellular activity, thereby enabling early mammalian development.


Oocytes , Proteins , Pregnancy , Animals , Female , Oocytes/metabolism , Proteins/metabolism , Embryo, Mammalian/metabolism , Cytoskeleton , Ribosomes , Embryonic Development , Mammals
10.
Open Biol ; 13(8): 230063, 2023 08.
Article En | MEDLINE | ID: mdl-37528732

Dendritic spines are crucial for excitatory synaptic transmission as the size of a spine head correlates with the strength of its synapse. The distribution of spine head sizes follows a lognormal-like distribution with more small spines than large ones. We analysed the impact of synaptic activity and plasticity on the spine size distribution in adult-born hippocampal granule cells from rats with induced homo- and heterosynaptic long-term plasticity in vivo and CA1 pyramidal cells from Munc13-1/Munc13-2 knockout mice with completely blocked synaptic transmission. Neither the induction of extrinsic synaptic plasticity nor the blockage of presynaptic activity degrades the lognormal-like distribution but changes its mean, variance and skewness. The skewed distribution develops early in the life of the neuron. Our findings and their computational modelling support the idea that intrinsic synaptic plasticity is sufficient for the generation, while a combination of intrinsic and extrinsic synaptic plasticity maintains lognormal-like distribution of spines.


Neuronal Plasticity , Neurons , Mice , Rats , Animals , Neuronal Plasticity/physiology , Neurons/physiology , Pyramidal Cells/metabolism , Dendritic Spines/metabolism , Synaptic Transmission/physiology , Synapses/physiology , Neurogenesis
11.
Nat Commun ; 14(1): 4777, 2023 08 21.
Article En | MEDLINE | ID: mdl-37604818

Recombinant human erythropoietin (rhEPO) has potent procognitive effects, likely hematopoiesis-independent, but underlying mechanisms and physiological role of brain-expressed EPO remained obscure. Here, we provide transcriptional hippocampal profiling of male mice treated with rhEPO. Based on ~108,000 single nuclei, we unmask multiple pyramidal lineages with their comprehensive molecular signatures. By temporal profiling and gene regulatory analysis, we build developmental trajectory of CA1 pyramidal neurons derived from multiple predecessor lineages and elucidate gene regulatory networks underlying their fate determination. With EPO as 'tool', we discover populations of newly differentiating pyramidal neurons, overpopulating to ~200% upon rhEPO with upregulation of genes crucial for neurodifferentiation, dendrite growth, synaptogenesis, memory formation, and cognition. Using a Cre-based approach to visually distinguish pre-existing from newly formed pyramidal neurons for patch-clamp recordings, we learn that rhEPO treatment differentially affects excitatory and inhibitory inputs. Our findings provide mechanistic insight into how EPO modulates neuronal functions and networks.


Erythropoietin , Gene Regulatory Networks , Humans , Male , Animals , Mice , Erythropoietin/genetics , Erythropoietin/pharmacology , Cognition , Learning , Solitary Nucleus
12.
Front Mol Neurosci ; 16: 1115880, 2023.
Article En | MEDLINE | ID: mdl-37533751

Advances in genome sequencing technologies have favored the identification of rare de novo mutations linked to neurological disorders in humans. Recently, a de novo autosomal dominant mutation in NACC1 was identified (NM_052876.3: c.892C > T, NP_443108.1; p.Arg298Trp), associated with severe neurological symptoms including intellectual disability, microcephaly, and epilepsy. As NACC1 had never before been associated with neurological diseases, we investigated how this mutation might lead to altered brain function. We examined neurotransmission in autaptic glutamatergic mouse neurons expressing the murine homolog of the human mutant NACC1, i.e., Nacc1-R284W. We observed that expression of Nacc1-R284W impaired glutamatergic neurotransmission in a cell-autonomous manner, likely through a dominant negative mechanism. Furthermore, by screening for Nacc1 interaction targets in the brain, we identified SynGAP1, GluK2A, and several SUMO E3 ligases as novel Nacc1 interaction partners. At a biochemical level, Nacc1-R284W exhibited reduced binding to SynGAP1 and GluK2A, and also showed greatly increased SUMOylation. Ablating the SUMOylation of Nacc1-R284W partially restored its interaction with SynGAP1 but did not restore binding to GluK2A. Overall, these data indicate a role for Nacc1 in regulating glutamatergic neurotransmission, which is substantially impaired by the expression of a disease-associated Nacc1 mutant. This study provides the first functional insights into potential deficits in neuronal function in patients expressing the de novo mutant NACC1 protein.

13.
Sci Adv ; 9(25): eadf6222, 2023 06 23.
Article En | MEDLINE | ID: mdl-37343100

Synaptic vesicle tethering, priming, and neurotransmitter release require a coordinated action of multiple protein complexes. While physiological experiments, interaction data, and structural studies of purified systems were essential for our understanding of the function of the individual complexes involved, they cannot resolve how the actions of individual complexes integrate. We used cryo-electron tomography to simultaneously image multiple presynaptic protein complexes and lipids at molecular resolution in their native composition, conformation, and environment. Our detailed morphological characterization suggests that sequential synaptic vesicle states precede neurotransmitter release, where Munc13-comprising bridges localize vesicles <10 nanometers and soluble N-ethylmaleimide-sensitive factor attachment protein 25-comprising bridges <5 nanometers from the plasma membrane, the latter constituting a molecularly primed state. Munc13 activation supports the transition to the primed state via vesicle bridges to plasma membrane (tethers), while protein kinase C promotes the same transition by reducing vesicle interlinking. These findings exemplify a cellular function performed by an extended assembly comprising multiple molecularly diverse complexes.


Synaptic Transmission , Synaptic Vesicles , Synaptic Vesicles/metabolism , Synaptic Transmission/physiology , Membrane Fusion , Cell Membrane/metabolism , Neurotransmitter Agents/metabolism
14.
iScience ; 26(4): 106350, 2023 Apr 21.
Article En | MEDLINE | ID: mdl-37009224

SUMOylation is an evolutionarily conserved eukaryotic posttranslational protein modification with broad biological relevance. Differentiating between the major small ubiquitin-like modifier (SUMO) paralogs and uncovering paralog-specific functions in vivo has long been very difficult. To overcome this problem, we generated His6-HA-Sumo2 and HA-Sumo2 knockin mouse lines, expanding upon our existing His6-HA-Sumo1 mouse line, to establish a "toolbox" for Sumo1-Sumo2 comparisons in vivo. Leveraging the specificity of the HA epitope, we performed whole-brain imaging and uncovered regional differences between Sumo1 and Sumo2 expression. At the subcellular level, Sumo2 was specifically detected in extranuclear compartments, including synapses. Immunoprecipitation coupled with mass spectrometry identified shared and specific neuronal targets of Sumo1 and Sumo2. Target validation using proximity ligation assays provided further insight into the subcellular distribution of neuronal Sumo2-conjugates. The mouse models and associated datasets provide a powerful framework to determine the native SUMO "code" in cells of the central nervous system.

15.
Elife ; 112022 11 18.
Article En | MEDLINE | ID: mdl-36398873

Active zones consist of protein scaffolds that are tightly attached to the presynaptic plasma membrane. They dock and prime synaptic vesicles, couple them to voltage-gated Ca2+ channels, and direct neurotransmitter release toward postsynaptic receptor domains. Simultaneous RIM + ELKS ablation disrupts these scaffolds, abolishes vesicle docking, and removes active zone-targeted Munc13, but some vesicles remain releasable. To assess whether this enduring vesicular fusogenicity is mediated by non-active zone-anchored Munc13 or is Munc13-independent, we ablated Munc13-1 and Munc13-2 in addition to RIM + ELKS in mouse hippocampal neurons. The hextuple knockout synapses lacked docked vesicles, but other ultrastructural features were near-normal despite the strong genetic manipulation. Removing Munc13 in addition to RIM + ELKS impaired action potential-evoked vesicle fusion more strongly than RIM + ELKS knockout by further decreasing the releasable vesicle pool. Hence, Munc13 can support some fusogenicity without RIM and ELKS, and presynaptic recruitment of Munc13, even without active zone anchoring, suffices to generate some fusion-competent vesicles.


Synapses , Synaptic Vesicles , Mice , Animals , Synapses/metabolism , Synaptic Vesicles/metabolism , Synaptic Transmission/physiology , Neurons/physiology , Carrier Proteins/metabolism , Presynaptic Terminals/metabolism
16.
Ann Neurol ; 92(6): 958-973, 2022 12.
Article En | MEDLINE | ID: mdl-36073542

OBJECTIVE: Rare inherited missense variants in SLC32A1, the gene that encodes the vesicular gamma-aminobutyric acid (GABA) transporter, have recently been shown to cause genetic epilepsy with febrile seizures plus. We aimed to clarify if de novo missense variants in SLC32A1 can also cause epilepsy with impaired neurodevelopment. METHODS: Using exome sequencing, we identified four individuals with a developmental and epileptic encephalopathy and de novo missense variants in SLC32A1. To assess causality, we performed functional evaluation of the identified variants in a murine neuronal cell culture model. RESULTS: The main phenotype comprises moderate-to-severe intellectual disability, infantile-onset epilepsy within the first 18 months of life, and a choreiform, dystonic, or dyskinetic movement disorder. In silico modeling and functional analyses reveal that three of these variants, which are located in helices that line the putative GABA transport pathway, result in reduced quantal size, consistent with impaired filling of synaptic vesicles with GABA. The fourth variant, located in the vesicular gamma-aminobutyric acid N-terminus, does not affect quantal size, but increases presynaptic release probability, leading to more severe synaptic depression during high-frequency stimulation. Thus, variants in vesicular gamma-aminobutyric acid can impair GABAergic neurotransmission through at least two mechanisms, by affecting synaptic vesicle filling and by altering synaptic short-term plasticity. INTERPRETATION: This work establishes de novo missense variants in SLC32A1 as a novel cause of a developmental and epileptic encephalopathy. SUMMARY FOR SOCIAL MEDIA IF PUBLISHED: @platzer_k @lemke_johannes @RamiJamra @Nirgalito @GeneDx The SLC family 32 Member 1 (SLC32A1) is the only protein identified to date, that loads gamma-aminobutyric acid (GABA) and glycine into synaptic vesicles, and is therefore also known as the vesicular GABA transporter (VGAT) or vesicular inhibitory amino acid transporter (VIAAT). Rare inherited missense variants in SLC32A1, the gene that encodes VGAT/vesicular inhibitory amino acid transporter, have recently been shown to cause genetic epilepsy with febrile seizures plus. We aimed to clarify if de novo missense variants in SLC32A1 can also cause epilepsy with impaired neurodevelopment. We report on four individuals with de novo missense variants in SLC32A1 and a developmental and epileptic encephalopathy with infantile onset epilepsy. We establish causality of the variants via in silico modeling and their functional evaluation in a murine neuronal cell culture model. SLC32A1 variants represent a novel genetic etiology in neurodevelopmental disorders with epilepsy and a new GABA-related disease mechanism. ANN NEUROL 2022;92:958-973.


Epilepsy, Generalized , Epilepsy , Seizures, Febrile , Animals , Mice , Epilepsy, Generalized/genetics , Epilepsy/genetics , Synaptic Transmission/genetics , gamma-Aminobutyric Acid/metabolism , Amino Acid Transport Systems/metabolism
17.
Elife ; 112022 06 06.
Article En | MEDLINE | ID: mdl-35662394

LRRTMs are postsynaptic cell adhesion proteins that have region-restricted expression in the brain. To determine their role in the molecular organization of synapses in vivo, we studied synapse development and plasticity in hippocampal neuronal circuits in mice lacking both Lrrtm1 and Lrrtm2. We found that LRRTM1 and LRRTM2 regulate the density and morphological integrity of excitatory synapses on CA1 pyramidal neurons in the developing brain but are not essential for these roles in the mature circuit. Further, they are required for long-term-potentiation in the CA3-CA1 pathway and the dentate gyrus, and for enduring fear memory in both the developing and mature brain. Our data show that LRRTM1 and LRRTM2 regulate synapse development and function in a cell-type and developmental-stage-specific manner, and thereby contribute to the fine-tuning of hippocampal circuit connectivity and plasticity.


Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules , Animals , Hippocampus/physiology , Long-Term Potentiation/physiology , Mice , Neural Cell Adhesion Molecules/metabolism , Synapses/physiology
18.
Proc Natl Acad Sci U S A ; 119(22): e2202842119, 2022 05 31.
Article En | MEDLINE | ID: mdl-35613050

The neurotransmitter dopamine (DA) controls multiple behaviors and is perturbed in several major brain diseases. DA is released from large populations of specialized structures called axon varicosities. Determining the DA release mechanisms at such varicosities is essential for a detailed understanding of DA biology and pathobiology but has been limited by the low spatial resolution of DA detection methods. We used a near-infrared fluorescent DA nanosensor paint, adsorbed nanosensors detecting release of dopamine (AndromeDA), to detect DA secretion from cultured murine dopaminergic neurons with high spatial and temporal resolution. We found that AndromeDA detects discrete DA release events and extracellular DA diffusion and observed that DA release varies across varicosities. To systematically detect DA release hotspots, we developed a machine learning­based analysis tool. AndromeDA permitted the simultaneous visualization of DA release for up to 100 dopaminergic varicosities, showing that DA release hotspots are heterogeneous and occur at only ∼17% of all varicosities, indicating that many varicosities are functionally silent. Using AndromeDA, we determined that DA release requires Munc13-type vesicle priming proteins, validating the utility of AndromeDA as a tool to study the molecular and cellular mechanism of DA secretion.


Axons , Dopamine , Dopaminergic Neurons , Nanostructures , Neurotransmitter Agents , Optical Imaging , Animals , Axons/metabolism , Brain/metabolism , Dopamine/analysis , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Fluorescent Dyes/chemistry , Mice , Neurotransmitter Agents/analysis , Neurotransmitter Agents/metabolism , Optical Imaging/methods , Paint , Spectroscopy, Near-Infrared/methods
19.
Front Mol Neurosci ; 15: 838262, 2022.
Article En | MEDLINE | ID: mdl-35431802

The neural cell adhesion protein neuroligin-4 has puzzled neuroscientists and geneticist alike for almost two decades. Its clinical association with autism spectrum disorders (ASD) is well established, however, its diversification into sex chromosome-specific copies, NLGN4X and NLGN4Y, remains uncharted territory. Just recently, the presence of substantial neuroligin-4 sequence differences between humans and laboratory mice, in which Nlgn4 is a pseudoautosomal gene, could be explained as a consequence of dramatic changes affecting the pseudoautosomal region on both sex chromosomes in a subset of rodents, the clade eumuroida. In this study, we describe the presence of sex chromosome-specific copies of neuroligin-4 genes in the Mongolian gerbil (Meriones unguiculatus) marking the first encounter of its kind in rodents. Gerbils are members of the family Muridae and are closely related to mice and rats. Our results have been incorporated into an extended evolutionary analysis covering primates, rodents, lagomorphs, treeshrews and culogos comprising together the mammalian superorder euarchontoglires. We gathered evidence that substantial changes in neuroligin-4 genes have also occurred outside eumuroida in other rodent species as well as in lagomorphs. These changes feature, e.g., a general reduction of its gene size, an increase in its average GC-content as well as in the third position (GC3) of synonymous codons, and the accumulation of repetitive sequences in line with previous observations. We further show conclusively that the diversification of neuroligin-4 in sex chromosome-specific copies has happened multiple times independently during mammal evolution proving that Y-chromosomal NLGN4Y genes do not originate from a single common NLGN4Y ancestor.

20.
Neuron ; 110(1): 51-69.e7, 2022 01 05.
Article En | MEDLINE | ID: mdl-34706221

Axons in the adult mammalian central nervous system fail to regenerate after spinal cord injury. Neurons lose their capacity to regenerate during development, but the intracellular processes underlying this loss are unclear. We found that critical components of the presynaptic active zone prevent axon regeneration in adult mice. Transcriptomic analysis combined with live-cell imaging revealed that adult primary sensory neurons downregulate molecular constituents of the synapse as they acquire the ability to rapidly grow their axons. Pharmacogenetic reduction of neuronal excitability stimulated axon regeneration after adult spinal cord injury. Genetic gain- and loss-of-function experiments uncovered that essential synaptic vesicle priming proteins of the presynaptic active zone, but not clostridial-toxin-sensitive VAMP-family SNARE proteins, inhibit axon regeneration. Systemic administration of Baclofen reduced voltage-dependent Ca2+ influx in primary sensory neurons and promoted their regeneration after spinal cord injury. These findings indicate that functional presynaptic active zones constitute a major barrier to axon regeneration.


Axons , Spinal Cord Injuries , Animals , Axons/metabolism , Central Nervous System/metabolism , Mammals , Mice , Nerve Regeneration/physiology , Neurons/metabolism , Spinal Cord Injuries/metabolism
...